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Material and Methods 

We modeled the requirements for selective phrenic 
nerve activation with COMSOL Multiphysics 3.3a 
(COMSOL Inc., Stockholm Sweden), a graphical 
environment useful for changing parameter values 
that could not be conveniently evaluated in vivo. A 
3D conductive media model was used to vary 
electrode locations, insulation thickness and inter-
electrode distances. Table 1 summarizes the 
dielectric properties used in our model. 

Component Connective 
Tissue 

Vessel 
Wall 

Blood Silicone Nerve 

Conductivity 
[S/m] 0.020 0.027 0.066 10e-4 0.087 

Relative 
Permittivity 25 45 300 11 650 

 

Table 1: Dielectric properties of human tissue [7] 

As shown in Fig. 1, endovascular electrodes were 
modeled as deployed inside the left subclavian 
vein in close proximity to the left phrenic nerve, 
and inside the superior vena cava, along which the 
right phrenic nerve courses. 

Our model compared relative stimulation efficacy 
of 2 types of electrodes: an endovascular insulating 
cuff placed snugly against the vein wall with two 
electrodes facing outward as described by Hoffer [5] 
(Fig. 2A-B) and a 6F (~2 mm diameter) vessel 
dilator with two electrodes attached to its outer 
surface (Fig. 2C-D). In both cases, the cathode and 
anode were placed at 90o from each other in a 
plane transverse to vein, parallel to phrenic nerve. 

  

 
 

 

 

Following the approvals from the SFU and UBC 
Animal Ethics Committees, prototype cuff and 
dilator electrodes (to be described in full detail 
elsewhere) were endovascularly implanted using 
the Seldinger technique. Stimulation selectivity, 
safety and stability properties were tested in nine 
acute and three 21-day chronic pigs (65 +/- 15 kg).  

Model Results 

Figs. 2A & C reveal the powerful effect of placing 
an insulating wall behind endovascular electrodes. 
To minimize occlusion of blood flow, we specified 
cuff cross-section area <10 % of vein lumen area. 
A 0.5 mm thick silicone cuff (Fig. 2A) shields the 
interior of the vein, resulting in more current 
flowing out the vein wall and into the nerve than 
for a similarly placed dilator electrode (Fig. 2C). 
These findings are evident in plots shown in Fig 3. 

 

 

 

 

 

 

 

 
Figure 3. Stimulation potentials reaching the phrenic 
nerve as function of cathodic potentials generated with 
cuff (red) vs.  dilator (blue) endovascular electrodes. 

A green dashed line in Fig. 3 shows the threshold 
potential (1.26 V; see [6]) required for phrenic nerve 
stimulation. Our model predicts the endovascular 
current required to activate a nerve with a shielded 
electrode (red arrow) is 3 times less than required 
from a lead-type dilator electrode (blue arrow). 

We estimated the stimulation sensitivity to 
electrode rotation and/or translation along the vein, 
by modeling the displacement of each electrode in  

            
Figure 4: Stimulus efficacy vs. cuff rotation angle. 

Figure 2: A. cuff with cathode electrode (red) optimally 
located inside vein wall to stimulate the phrenic nerve. 
B. cuff rotated 45o away from its optimal orientation. C. 
6F dilator with its cathode contacting the vein wall at the 
optimal location and orientation. D. Dilator electrode 
shown displaced 1.5 mm away from vein wall and nerve. 
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longitudinal and transverse directions. An example 
of a cuff electrode rotated 45o away from its 
optimal position is shown in Fig. 2B. Results of 
rotating the cuff cathode from -180o to +180o with 
respect to optimal position are plotted in Fig. 4. 
The model predicts that 90o rotation away from the 
optimal position results in a 5-fold reduction in 
nerve stimulation efficacy, and 180o rotation 
results in 50-fold reduction in stimulation efficacy.  

The dependence of stimulation efficacy on distance 
between electrode and nerve is modeled in Fig. 5. 
Advancing the cathode toward and then past the 
target nerve results in a steep parabolic function. If 
the cathode is placed just 2 cm away from its 
optimal location, our model predicts nearly 10-fold 
reduction in efficacy of transvascular stimulation. 

  
Figure 5: Model of efficacy vs. distance along vein. 

Pig Implant Results 

We mapped in acute and chronic pigs the threshold 
currents required for left phrenic nerve recruitment 
as function of electrode depth into the vein, and 
found fundamental agreement with model 
predictions. Fig. 6 shows a representative result. 
  

 
 

Figure 6: Left phrenic nerve stimulation efficacy as a 
function of electrode depth into vein (Chronic Pig #1). 

Balanced biphasic pulses of 180 µs phase duration 
were used. Electrode placements within 1 cm from 
the nerve required stimulus currents < 2 mA, but 

when the electrode was moved along the vein in 
either direction, away from the nerve, threshold 
currents increased rapidly in parabolic fashion. 

In 3 pigs, endovascular electrodes were aseptically 
implanted and left in situ for 3 weeks.  Electrode 
performance was assessed under anaesthesia on 
days 1, 11 and 21. Stimulation properties remained 
stable and the pigs remained healthy and gained 
weight normally throughout the testing period. 

Discussion 

Our model results provide guidelines for designing 
endovascular electrodes that maximize target nerve 
stimulation efficacy and also minimize unwanted 
stimulation of other structures. Stimulus efficacy is 
strongly dependent on electrode position with 
respect to both the vein wall and the target nerve, 
and is greatly improved by placing an electrically 
insulating barrier between the electrodes and blood 
inside the vein. Our results in anaesthetized pigs 
are consistent with these model predictions.  

Conclusions 

Effective transvascular diaphragm pacing in ICU 
patients will require deployment of endovascular 
electrodes within 1 cm from each phrenic nerve.  
Insulated endovascular electrodes that are stably 
positioned for diaphragm pacing are unlikely to 
produce unwanted stimulation of vagus nerves, 
since the latter course >2 cm away from the 
phrenic nerves in the regions of interest.  
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Current Required for Threshold Phrenic Nerve Stimulation (mA)
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